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THE 

IN 
FAST FOURIER TRANSFORM 

FOURIER SPECTROSCOPY 

Thomas E. Michels 

ABSTRACT 

I 
The "Fast Fourier Transform" (suggested by Drs.  

J. W. Cooley and J. W. Tukey) is presented with special 
application to solving the interferogram integral obtained 
in Fourier Spectroscopy. Computational timing is tabu- 
lated and an explanation of a computer routine using this 
method to a binary base is presented. n 
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THE 
FAST FOURIER TRANSFORM 

IN 
FOURLER SPECTROSCOPY 

INTRODUCTION 

The problem of digitally reducing interferogram data obtained from an in- 
terferometer spectrometer is two fold; (1) numerical quadrature of the inter- 
ferogram integral to obtain the spectral magnitudes, and (2) computation of the 
phase of the spectral magnitudes to determine the direction of radiation flow. 

A third requirement can be placed on the computation if a great number of 
spectrums are  to be analysed; that is fast calculation on a high speed digital 
computer. This is the problem with which this paper is primarily concerned. 

Many methods of fast calculations of the interferogram integral have been 
suggested; however, the "Fast Fourier Transform" (Cooley, J. W. and Tukey, 
J. W., 1965) method offers many advantages in speed and accuracy which others 
do not have. 

The application of this method to discrete interferogram data is discussed 
and the use of an existing computer program written by Dr. J. W. Cooley in 
FORTRAN IV using the "Fast Fourier Transform" to compute a Fourier trans- 
form or  series is explained in Appendicies I and 11. Only a small amount of in- 
terferometer theory is discussed so as to keep the general theme of the report. 

It should be mentioned that the Fast Fourier Transform has been imple- 
mented with much success into the Infrared Interferometer Spectrometer (IRIS) 
Experiment Data Reduction Program as  well as the theoretical simulating the 
IRIS experiment. Computational timings have been tabulated using these pro- 
grams and are  given in a following section. The reader should also be aware 
that now with the computational speeds obtained using the "Fast Fourier Trans - 
form," problems in Fourier Spectroscopy which previously were overly time 
r, msuming on the computer are now realistic for computer solution. These in- 
,dude taking convolutions for truncated Fourier Integrals, shown by Dr. J. W. 
::ooley, co-author of the Fast Fourier Transform (in an unpublished report) and 
iorrection of asymmetric interferograms (Forman, M. L., 1965). 
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The author is greatly indebted to Drs. B. Conrath and R. R. Hanel for many 
hours of helpful discussions on interferometer theory and Fourier analysis, and 
to Dr. J. W. Cooley for the use of his computer program. 

DESCRIPTION O F  THE PROBLEM 

The instrument used to obtain interferogram data in the IRIS experiment is 
essentially a two beam Michelson interferometer, sketched in Figure 1. 

INCOMING 
RAD I AT I ON 

D 
MOVEABLE 

MIRROR 

DETECTOR 
A 

Figure 1 -Sketch of Michel son Interferometer 

The incoming heterochromatic radiation is split at the beam splitter, A , 
into two waves of equal amplitude; one directed toward a moveable mir ror  at Cy 
and the other toward a fixed mir ror  at B. They a r e  reflected back to the beam 
splitter, recombined, and directed to the detector at D. The recombined signal 
received at the detector is the interference pattern of the two beams called the 
interferogram and, ideally, can be defined as a function of path difference traveled 
by the two.beams by 

00 

I ( 6 )  = Bv ei2nvS d u  1. 
The path difference, 6,  is defined with the aid of Figure 1 by 

6 = 2 (CA - BA) 
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The multiplying factor of two times t,he distance (CA-BA) arises from the fact 
that the radiation travels to the mirror and back again to transverse the added 
distance ( 6  can be given as a function of time and mirror  velocity; however, we 
will  use the path difference relationship here). 

B, is the spectral distribution of the incoming radiation and is written here 
in terms of wave number, v . It has  been extended to include negative wave 
numbers by the definition 

Clearly, B, is real, and B, and I ( S )  are transform pairs; thus one is able 
to obtain the spectrum €3, by taking the Fourier transform of equation (1) which 
is 

B, = I(6) e-i2nu6 d6. 

If I( S )  were symmetric, which in  the theoretical case is true, equation (2) 
reduces to 

B, = 2 lm I(6) c o s  (27rvS) d6 

However, in actual interferometer use a phase shift, v u  , is introduced by 
the instrument components to the incoming radiation and equation (1) should be 
re-written as 

I ( S ) ,  B e"" e i2.rru8 dv (3) 
J -m 

1(8)in this case will be an asymmetric function about zero path difference, 
6,. Upon taking the Fourier transform of equation (3),  one obtains 

3 



Equation (4) is of the form 

Bv eivv = Cv t i Sv 

l 
and one merely takes the absolute value of the right hand side to obtain the 

I spectral magnitudes. 

The phase shift cp, can, of course, be computed from 

The phase spectrum can be a useful tool in interpreting the amplitude 
spectrum. The direction of the net energy transfer between the detector and 
the target (determining whether the detector is warmer or colder than the 
target) changes direction from one spectral region to another and is indicated 
by an abrupt phase shift of 180’. 

~ 

Therefore, the problem of digitally reducing interferogram data requires 
solution of the interferogram integral in equation (4) and computation of the 
spectral amplitude phases by equation ( 5 ) .  

NUMERICAL QUADRATURE OF THE INTERFEROGRAM INTEGRAL 

, z The numerical calculation of the integral in equation (4) can be done by 
various quadrature methods. The Gaussian quadrature is perhaps the most 
accurate, but this method requires unequal spacing in the sampled data. 

It is suggested that in  practical use, when the truncated range (- 6,, Sz)  of the 
integral (see equation (6)) is large enough, many advantages are offered by use 
of the trapezoidal rule. 

One advantage in accuracy is easily seen by looking at Eulers summation 
formula: (Scarborough, 1955) 

h5 [f“‘(b) - f”’(a)] - - [fv(b) - fv(a)] + 

h3 
7 20 30240 

- - t- 
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This states that if the odd derivatives at the endpoints of an integration a re  
small or equal, the trapezoidal rule is an excellent approximation to the integral. 

In many cases, the derivatives at the endpoints of the interferogram are  
equal, and in  the worst cases observed the derivatives were always of the 
same order. In these cases, the order of the e r ro r  would be h , the separation 
distance (A8 in the interferogram integral), and for the interferogram integral, 
this is small. 

Therefore, the trapezoidal rule appears to be a satisfactory quadrature 
method and, as one wil l  see,  is a suitable form for the "Fast Fourier Trans- 
form" to obtain speed of calculation. 

Rewriting equation (4) as a truncated inverse over the interval (-sl , 5 ), 
and, for  convenience, setting 4, =BveiPv , we have 

Since the interferogram values sampled by the instrument are an average 
over an interval, the trapezoidal rule takes the form 

where the subscript, j , ranges over N sampled intervals with N defined as 

N = m + n + l  

The point 8, is of course the sampled interval which normally will not 
correspond exactly to the point of zero path difference. Correction methods 
have been studied for correction of asymmetric interferograms of this type 
(Forman, M. L.); however, this paper will not concern itself with these methods. 

Solution of equation (7) to obtain the spectral magnitudes and phase angles 
is easily accomplished using the "Fast Fourier Transform," and, as one will 
see,  yields a very high degree of accuracy for computer solution. 



THE "FAST FOURIER TRANSFORM" 

1. Description of the Method 

The form of the Fourier ser ies  equation required for  the "Fast Fourier 
Transform" is 

N -  1 2nj k 
i 7  

I(j) = B ( k ) e  - 

r 
k = O  

1 = O ,  1, 2. . . N-1  

l and its transform is 

N- 1 . 2 n j k  
-1 - 

B(k) =' I (6j )  e N 
N 

j = O  

(9) 

Normal solution of equation (8) using a decimal based summation requires 
an order of N 2  operations where an operation is defined as one multiplication 
and addition. 
is of the order 8 N  logr N . A simple example will illustrate the saving. 

, However, the number of operations using a different base, say r , 
l 

If N is composite such that N = r l  * r2 , and j and k a re  written 

j = r l  j ,  t jo, j o  = 0, I ,  2, . . . r l  - 1; j l  = O , 1 ,  . . . r2 -1  

and 

k = r 2 k l t k o , k o = 0 , 1  , . . .  r 2 - l ; k l = 0 , 1  , . . .  r 1 - 1  

then equation (8) can be written 

6 



But 

Therefore, the inner sum over k ,  , depends only on j o  and k, , which can be 
written as 

2 7  
i - N k l  j, r 2  

Bl(Jogk,) =E B(r2 k, + k,) e 

and equation (8) now becomes 

The total number of operations for this case is now N (  rl + r2)  as opposed to N2 before. 

It has been shown (Colley, J. W., Tukey, J. W., 1965) that the most saving is 
obtained when N is written as some number raised to an integer power, or 

N = rm 

7 



and, further, if r = e ,  one uses the least operations in solving equation (8). How- 
ever, i f  r = 2 ,  the saving is approximately the same, and from a digital com- 
puter standpoint, certain advantages in programming are obtained. 

With this in mind, if one writes 

N = 2" 

and 

j = 2"-1 j m - l  t 2 m - 2  j m - 2  t . . . +  j ,  

where each j t  and k4 , 4 = 0, . . . m-1 take on the values 0, 1, then equation (8) 
takes the form 

I 

where 
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and 

I -  

4 = 1, 2, ... , m 

The routine listed in AppenYx I uses the base two and is written such that 
either the Fourier ser ies  coefficients or their transform can be computed. That 
is, one is able to compute either equation (8) or  equation (9). 

2. Application to the Interferogram Integral. 

We saw that the spectral magnitudes and phase angles can be obtained from 
equation (7), 

n 

If one sets, 

and 

6 .  = j 0 6 ,  j z O ,  1, . . .  N - 1  
1 
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where v o  = 6, = 0 , we have 

Further, tf one makes the substitutions 

A6Au = N-' = (Number of sampled int ma l  

one can write the summation in the form suitable for the "Fast Fourier Trans- 
form." That is, 

where 

N = m + n + l  

If the number of sampled intervals,N , does not equal a power of two and 
the interferogram has zero mean (no DC component), one is able to add values 
equal to zero to either o r  both ends of the interferogram without loss of ac- 
curacy and compute spectral magnitudes corresponding to v = kAv.  Here, 

1 
A6 - "  

nu = 

where 

N' = N  i-8 

such that N' is equal to two raised to some integral power. 

10 



-a e- -+a 

Figure 2-Interferometer extended with zeros on each end with 
6, centered in  area of N' intervals.  

Further, if the interferogram is positioned in the area of N' intervals as 
shown in Figure 2, such that 6 is a distance N'/2 from the beginning, a par- 
ticularly simple case arises. Keeping in mind that A, = Bv e iPv  , equation (11) 
takes the following form for this case, 

N -  1 2 n  

and the spectral magnitudes are computed as before from 

Bv, = J A v k l  

Re-writing equation (12) a s  

or  

the phase angle can then be computed from 

'Sv, 
'pv, = tan-'(<) + k 71 

11 



o r  

For Le  case when the 

1 vuk = tan- 

nterval6, is not positioned in the center of - he array,  
one still can use equation (12) to compute the spectral magnitudes, however, one 
must use an equation similar to equation (11) to compute the phase angles. That 
is, 

where, n , is the number of intervals from the beginning of the array to 6 , . 
In using the routine in Appendix I, one must be careful applying it to com- 

pute the Interferogram integral. From experience it proved easier and faster 
to compute the Fourier ser ies  coefficients rather than the Fourier transform. 
This means that for the real input data, one obtains the complex conjugate of the 
vector Bvk e i(cuk as output from the "Fast Fourier Transform." 

Clearly, this makes no difference in computing the spectral magnitudes 
other than a factor of two, however, the phase angles must now be computed 
from 

s Uk 
vuk = kn - tan-'(.;) 

o r  

(-1)k' S V k  [ ( - l ) k  ' C U k  1 vuk = tan-l 

o r ,  in the case where 6, is not positioned in the center of the interferogram, 

-l($) 
2nkn vuk = - -tan 
N 
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3. Summary of the Application. 

The method of computing the spectral magnitudes and phase angles can be 
summarized as follows : 

1. Read the interferogram data into the "Fast Fourier Transform" (FFT) 
andcompute a Fourier ser ies  yielding Cyk and SV, as output. 

FFT(series) = Cvk t i Svk 

2. Compute the spectral magnitudes from 

where 

vk = k Av, k = 0,  1, . . .  N -  1 

and 1 nu  = - 
A6 . N '  

3. Compute the phase angles from either equation (17) o r  (18) depending 
upon the position of the interferogram data in the array of size N' = 2 

In using the routine in Appendix I, one automatically obtains the same 
number of points of output as  he has read in a s  input. 

4. Computational Timing 

Figure 3 shows the computational times obtained using the FORTRAN IV 
version of the "Fast Fourier Transform" routine (HARM) listed in Appendix I. 
The line indicating the times obtained on the IBM 360/65 system were obtained 
with the HARM subroutine, compiled with the optimization option. These times 
were obtained by Mr. Guy Marcot, Laboratory for Space Sciences, GSFC. A 
comparison with conventional times obtained with the algorithm by Goertzel 
indicates the saving, especially with a large number of data points. 

13 



Figure 3-Computation Times using the FORTRAN I V  version of HARM on 
the IBM 7094 and 360/65 Computers vs. the Goertzel algorithm. 

No. of 
Points 

2 1 1  

2 1 2  

Time for Fourier 
series calculation 

1,3 sec 

2.6 sec 
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APPENDIX I 

Sample Program Using the "Fast Fourier Transform" Routine "HARM" 

The following program has been written exemplifying the use of the "HARM" 
subroutine to compute the transform of a se t  of real data and take the inverse 
of the transform to compare with the original data. 

"HARM" is written in FORTRAN IV and is set  up to accept complex input as 
well as to perform a three-dimensional sum in directions M(l), M(2), M(3). 
The return from "HARM" has the complex vector computed and stored in the 
a r ray  A, where 

A ( l )  -+ i A(2) = Cv, t i Sv, 

and so on. The array M and option IFS must be set  prior to entry, and if  one 
wishes to use the routine in one-dimension, as in the sample program, one sets  

M(l) = log2  N 

M(2) = 0 

The call to the "HARM" subroutine is 

CALL HARM (A, My INV, S, IFS, IFERR) 

A = Array of complex input, where the real  and imaginary parts a r e  

M = Array containing the logrithm to the base 2 of the length of the 
in consecutive storage locations. A must be dimensioned 2N. 

summations in directions M(1), M(2), M(3). M is dimensioned 3. 

17 



INV = Array computed in "HARM" for  bit inverting. INV is dimensioned 
N/8. 

S = Array computed in "HARM" containing the a r ray  of sines. S is 
dimensioned N/8. 

IFS = 0 compute INV and S tables 
+1 compute INV and S tables and do Fourier series 
-1 compute INV and S tables and do Fourier transform 
+2 do Fourier series only 
-2 do Fourier transform only 

IFERR = Error  option. (See Appendix 11) 

Further amplification of the use of "HARM" can be obtained from the 
program write-up on file in the Laboratory for Atmospheric and Biological 
Sciences. 
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